



# Table of Contents

| ١.    | Table of Contents                                                                                                                                                                                                                          | I-1                                                      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| П.    | Introduction                                                                                                                                                                                                                               | -1                                                       |
| 111.  | Theory of Operation<br>System Description<br>Block Diagram<br>CPU<br>Video Display Processor<br>Memory<br>RF Modulator<br>Hand Control Interface<br>Power Supply                                                                           | -1<br>   -2<br>   -3<br>   -4<br>   -5<br>   -5<br>   -6 |
| IV.   | Disassembly/Assembly Instructions<br>Disassembly<br>Assembly<br>ColecoVision Exploded View                                                                                                                                                 | IV-1<br>IV-1<br>IV-2                                     |
| V.    | Schematics and Drawings<br>Logic Board and RF Board Schematic<br>Logic Board Assembly Drawings<br>RF Board Assembly Drawing<br>Parts List                                                                                                  | V-1<br>V-2<br>V-8<br>V-9                                 |
| VI.   | Testing and Troubleshooting<br>Troubleshooting Equipment Requirements<br>Diagnostic Cartridge<br>Explanation of Troubleshooting<br>Color Representation of Video Test<br>Color Representation of Color Test<br>Troubleshooting Flow Charts | VI-1<br>VI-2<br>VI-3<br>VI-3<br>VI-4                     |
| VII.  | Pictures of Signals                                                                                                                                                                                                                        | VII-1                                                    |
| VIII. | Technical Tips                                                                                                                                                                                                                             | VIII-1                                                   |
| IX.   | Glossary                                                                                                                                                                                                                                   | IX-1                                                     |
| Х.    | ColecoVision Updates                                                                                                                                                                                                                       | X-1                                                      |
| XI.   | Notes                                                                                                                                                                                                                                      | XI-1                                                     |



#### Introduction

The ColecoVision Repair Manual is designed to assist the repair person in locating problems within the system in a minimum amount of time. The book has been organized into eleven basic headings for ease in selecting sections of pertinence.

- I. Table of Contents
- II. Introduction
- III. Theory of Operation—comprised of two sections; Systems Description giving a general overview of the ColecoVision system and the Theory of Operation with a more detailed description of the ColecoVision parts.
- IV. Disassembly/Assembly Instructions gives detailed instructions for taking apart the ColecoVision plus a detailed three dimensional drawing of the main console to assist in identifying the console parts.
- V. Schematics and Drawings—includes a parts list and detailed drawings of component locations.
- VI. Testing and Troubleshooting—includes a list of required test equipment, description of the diagnostic cartridge, pictures of the color test as they should be seen on a television screen, the flow charts, along with a description on how to follow the flow charts.
- VII. Pictures of Signals—are representations of readings on the oscilloscope and directions for correctly using the oscilloscope.
- VIII. Technical Tips acquaint repair person with specific problems, used as a short cut to common repair problems.
- IX. Glossary-describes unfamiliar words and some terms unique to the ColecoVision system.
- X. ColecoVision Updates—will be an area to file modifications, part changes or additional information as it becomes available to repair centers.
- XI. Notes—A place to keep your own notes which you find helpful in servicing ColecoVision in efficient, professional methods. ColecoVision welcomes additions or changes from you, so that we may include them in our ColecoVision Updates.



### System Description

ColecoVision contains five basic parts: the Central Processing Unit (CPU), the video section, the audio section, the RF modulator and memory. The game has two handcontroller ports to input data and an expansion port which outputs the entire CPU bus, CPU control lines and selected inputs to the RF modulator, onto a 60 pin edge connector.

The CPU consists of a Z-80A microprocessor and support circuitry. The Z-80A has an eight bit data bus and a sixteen bit address bus. The support circuitry consists of a clock, reset circuitry and decoders.

The video section is made up of Texas Instrument's 9928 Video Display Processor (VDP) and eight Video RAM (VRAM). The VDP interfaces to the CPU via the eight bit data bus and four control signals, CSW, CSR, Mode (A0), and NMI. VRAM interfaces to the VDP via an eight bit bidirectional address/data bus, a unidirectional eight bit data bus and three control lines, RAS, CAS, and R/W. The video section outputs three signals to the RF modulator.

The audio section is basically the Texas Instrument's 76489 sound generator chip. The integrated circuit is on the eight bit CPU data bus and uses two other inputs to enable the chip along with the system clock for synchronization. The 76489 outputs a ready signal to the CPU when it has inputted the data on the data bus. It outputs audio to the RF modulator.

The RF modulator takes both the audio and video signals and outputs the RF modulated signal. Either channel 3 or 4 carrier frequencies can be selected by the channel selector switch.

ColecoVision uses three types of memory; System Read Only Memory (ROM), cartridge ROM, and Random Access Memory (RAM). The system ROM contains frequently used sub-routines. Cartridge ROM contains patterns and game rules for a particular game. RAM is used to store temporary information (scores, motion variables, etc.).





#### CPU

The CPU is comprised of the Z-80A microprocessor, a clock circuit for synchronization and two decoders.

The clock circuit is made up of a 7.19 MHz crystal oscillator. This frequency is divided by two using a "D" flip-flop. This new frequency is the 3.58 MHz that is required for color burst.

The decoders are used to translate portions of the address bus to select the VDP, RAM, Cartridge ROM, System ROM and the grounds for the handcontrollers.

The Z-80A uses two busses, address and data. The Address Bus  $(A_0-A_{15})$  provides the address for memory (up to 64K bytes unidirectional) data exchanges and for I/O device data exchanges. The  $A_0-A_{15}$  constitutes a 16 bit address bus. The Data Bus  $(D_0-D_7)$  consists of an 8 bit tri-state bidirectional data bus. It is used for data exchanges with memory and I/O devices.

In addition to the two busses the Z-80A has several control signals.

**Machine Cycle One**  $(M_1)$  indicates the current machine cycle is the OP code fetch cycle of an instruction execution. Output, active low.

**Memory Request** (MREQ) signal indicates the address bus holds a valid address for a memory read or memory write operation. Tri-state output, active low.

**Input/Output Request** (IORQ) signal indicates the lower half of the address bus holds a valid I/O address for an I/O read or write operation. An IORQ signal is also generated when an interrupt is being acknowledged to indicate that an interrupt response vector can be placed on the data bus. Tri-state output, active low.

**Memory Read** (RD) indicates the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus. Tri-state output, active low.

**Memory Write (WR)** indicates the CPU data bus holds valid data to be stored in the addressed memory or I/O device. Tri-state output, active low.

**Refresh (RFSH)** indicates the lower seven bits of the address bus contain a refresh address for dynamic memories and the current MREQ signal should be used to do a refresh read to all dynamic memories. Output, active low.

Halt State (HALT) indicates the CPU has executed a HALT software instruction and is awaiting either a non-maskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOP's to maintain memory refresh activity. Output, active low.

**Wait** (WAIT) indicates to the Z-80A CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter wait states for as long as this signal is active. Input, active low.

**Interrupt Request** (INT) signal is generated by I/O devices. A request will be honored at the end of the current instruction if the internal software controlled interrupt enable flip-flop (FF) is enabled. Input, active low.



**Non Maskable Interrupt** (NMI) request line has a higher priority than INT and is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. NMI automatically forces the Z-80A CPU to restart to location  $0066_{\rm H}$ . Input, active low.

**Reset** initializes the CPU as follows: reset interrupt enable flip-flop, clear PC and registers I and R and set interrupt to 808A mode. During reset time, the address and data bus go to a high impedance state and all control output signals go to the inactive state. Input, active low.

**Bus Request** (BUSRQ) signal has a higher priority than NMI and is always recognized at the end of the current machine cycle. It is used to request the CPU address bus, data bus and tri-state output control signals to go to a high impedance state so that other devices can control these buses. Input, active low.

**Bus Acknowledge** (BUSAK) is used to indicate to the requesting device that the CPU address bus, data bus and tri-state control bus signals have been set to their high impedance state and the external device can now control these signals. Output, active low.

#### Video Display Processor

The VDP generates all video, control and synchronization signals and also controls the storage, retrieval and refresh of display data in a dynamic memory, VRAM.

For ColecoVision applications the VDP operates in a Graphics I mode. The Graphics I mode provides a  $256 \times 192$  pixel display for generating pattern graphics in 15 colors plus transparent. A pixel is defined as the smallest point on the TV screen that can be independently controlled.

The video display consists of 35 planes; external VDP, backdrop, pattern plane, and 32 sprite planes. The planes are vertically stacked with the external VDP being the bottom or innermost plane. The backdrop plane is the next plane followed by the pattern plane that contains graphic patterns. The 32 top planes are sprite planes.

The VDP basically has three interfaces: CPU, RF modulator assembly, and a dynamic RAM (VRAM), the contents of which define the TV image. The VDP has eight write-only registers and a read-only status register.

The CPU interface consists of an eight bit bidirectional data bus, control lines and an interrupt.

Data can be transmitted to the CPU or from the CPU over the data bus, depending on the state of the CSW and CSR control lines. When CSW is low, data is transmitted from the CPU to the video display processor. When CSR is in a low state, data is transmitted from the video display processor to the CPU. CSR and CSW should not be simultaneously low.

Another control line, address line A $\emptyset$ , determines where the VDP will retrieve the data or where it will send the data. If A $\emptyset$  is high, the data will be stored into, or retrieved from an internal register. Which register is used is determined by the data. If A $\emptyset$  is in a low state the data will be stored into or retrieved from the VRAM.

The Video Display Processor has several internal registers, a general purpose eight bit data register, a 16 bit address register, and 8 eight bit dedicated purpose registers. The general purpose register is used to input



or output data on the CPU data bus. The address register inputs the address of the VRAM. The other eight registers store data for colors, images and image location.

The VDP accesses 16K bytes of dynamic ram called VRAM. The VRAM stores data to be used for image processing.

Three other functions are associated with the VDP; NMI, Reset and the clock. NMI provides a pulse to the CPU approximately every 1/60 second. Reset initializes the internal registers and the synchronization pulses to a known state. The clock input is a 10.7 MHz clock derived from the 3.58 MHz clock by using a third harmonic wave shaping circuit.

The Video Display Processor interfaces with eight  $16K \times 1$  dynamic RAMS. This is accomplished by using two eight bit unidirectional busses and three control lines. Addressing the RAM is a two-step process. First RAS is active while an address is on the data-in/address bus. This is latched into the RAM and is used to select the Row address. The next step is to select the column. This is accomplished by strobing CAS low while an address is on the bus. The other control line R/W determines if data will be written into the VRAM or read onto the VRAM output bus. If R/W is low the data will be stored into RAM, if high the data will read from RAM to the output bus.

| Memory |  |  |  |  |  |
|--------|--|--|--|--|--|
|        |  |  |  |  |  |
|        |  |  |  |  |  |
|        |  |  |  |  |  |
|        |  |  |  |  |  |
|        |  |  |  |  |  |
|        |  |  |  |  |  |

**System ROM** is arranged  $8K \times 8$  bits. The CS in the low state reads data onto a data bus which is determined by a selected address. CS in the high state forces Q1-8 into a high impedance state (example: not connected to a bus.). It interfaces to the CPU using the U5 decoder.

**Cartridge ROM** has a memory capability of up to  $32K \times 8$  bits that is selected in banks of  $8K \times 8$  bits. Each bank is selected by CS1 — CS4 using the U5 decoder. CS 1 — CS4 is the same as chip select in system ROM.

**RAM** (Random Access Memory) has a memory capacity of  $1K \times 8$  bits. RAM is comprised of two integrated circuits arranged  $1K \times 4$  bits. Write Enable Low writes DQ1-4 into the memory location selected by the address bus. Write Enable High reads DQ1-4 onto the data bus. DQ1-4 depends on data contained in the location selected by the address bus. Chip Select(S) High deselects the chip, DQ1-4 become a high impedance state, interfacing to the CPU using the U5 decoder and WR from the Z-80A.

#### **RF Modulator**

The RF Modulator interfaces video, color, difference, luminance and audio signals to the antenna terminal of the television receiver. It consists of a video modulator integrated circuit and associated discrete circuitry.

The discrete circuitry includes a sound tank circuit, a carrier frequency tank circuit and output impedance matching. An analog switch is used to switch in ColecoVision video or expansion module video. The analog switch is located on the main logic board, rather than on the RF board.



#### Hand Control Interface

The hand control interface consists of a spinner interface and a joystick/keypad interface.

The joystick/keypad interface uses two ground strobe outputs for each control port and five inputs for each control port. The ground strobe outputs are generated from the CPU address bus using a decoder and a flip-flop. The flip-flop ensures that one strobe is enabled at a time. One strobe is used for the joystick and to fire left. The other strobe is used for the keypad and to fire right. The inputs are buffered by two octal buffers, one for each port. At this point, a low input moves the character on the selected game. The buffers are gated onto the data bus by signals decoded from the address bus.

The spinner interface uses two inputs for each port. Required inputs are two square waves 180° out of phase. Phase relationship determines direction. Pulse time determines speed. One input is used to interrupt the microprocessor. This interrupt enables the microprocessor to halt its action, examine the square waves for direction and speed and then return to its original operation.

#### **Power Supply**

The entire power supply is contained in the plug-in wall unit. The supply contains a step-down transformer, rectifiers, filters and regulators. It outputs +5VDC, +12UDC and -5VDC.

The unit is ultrasonically welded, therefore it is not serviceable. If the power supply is defective or not working properly, the entire unit should be replaced.



#### Disassembly

- 1. Turn unit over so that bottom is in an upright position.
- 2. Remove eight bottom screws.
- 3. Turn unit back over so that top is once again in the upright position.
- 4. To remove top housing, carefully pull out and up in front, then do the same for the back, do this back and forth, firmly, until the top housing pops off. At this point do not tamper with the front housing. There is never a need for it to be removed.
- 5. Remove reset switch and on/off switch caps.
- 6. Unsolder and unscrew top RF shield and ground strap and remove.
- 7. Remove two screws from printed circuit board and repair.

#### Assembly

- 1. Replace printed circuit board and replace two screws.
- 2. Replace ground strap and top RF shield with screws and solder.
- 3. Replace reset switch and on/off switch caps. Double check, at this point, to make sure the reset switch is in place.
- 4. Replace top housing.
- 5. Turn unit over and reset eight bottom screws.
- 6. Turn back over to the original upright position and test your Coleco-Vision.





# Assembly Drawings





# Logic Board







Logic Board (Expanded View)















Logic Board (Expanded View)





**RF BOARD** 



# Parts List



# Capacitors

| <b>REFERENCE</b> / |                           |             |
|--------------------|---------------------------|-------------|
| DESIGNATOR         | DESCRIPTION               | PART NUMBER |
| C1                 | .002 $\mu$ f ceramic disc | R72311      |
| C2                 | .1 $\mu$ f ceramic disc   | R72284      |
| C3                 | 1 $\mu$ f electrolytic    | R72617      |
| C4                 | 68pf ceramic disc         | R72255      |
| C5                 | .1 $\mu$ f ceramic disc   | R72284      |
| C6                 | Not used                  |             |
| C7                 | .1 $\mu$ f ceramic disc   | R72284      |
| C8                 | .1 $\mu$ f ceramic disc   | R72284      |
| C9                 | .1 $\mu$ f ceramic disc   | R72284      |
| C10                | .1 $\mu$ f ceramic disc   | R72284      |
| C11                | .1 $\mu$ f ceramic disc   | R72284      |
| C12                | .1 $\mu$ f ceramic disc   | R72284      |
| C13                | .1 $\mu$ f ceramic disc   | R72284      |
| C14                | Not used                  |             |
| C15                | Not used                  |             |
| C16                | 10 $\mu$ f electrolytic   | R72642      |
| C17                | .1 $\mu$ f ceramic disc   | R72284      |
| C18                | Not used                  |             |
| C19                | .1 $\mu$ f ceramic disc   | R72284      |
| C20                | Not used                  |             |
| C21                | .1 $\mu$ f ceramic disc   | R72284      |
| C22                | .1 $\mu$ f ceramic disc   | R72284      |
| C23                | Not used                  |             |
| C24                | .1 $\mu$ f ceramic disc   | R72284      |
| C25                | Not used                  |             |
| C26                | .1 $\mu$ f ceramic disc   | R72284      |
| C27                | .1 $\mu$ f ceramic disc   | R72284      |
| C28                | .1 $\mu$ f ceramic disc   | R72284      |
| C29                | Not used                  |             |
| C30                | .1 $\mu$ f ceramic disc   | R72284      |
| C31                | .1 $\mu$ f ceramic disc   | R72284      |
| C32                | .1 $\mu$ f ceramic disc   | R72284      |
| C33                | Not used                  |             |
| C34                | 10 $\mu$ f electrolytic   | R72642      |
| C35                | Not used                  |             |
| C36                | 10 $\mu$ f electrolytic   | R72642      |



# Capacitors

| <b>REFERENCE</b> / |                           |                |
|--------------------|---------------------------|----------------|
| DESIGNATOR         | DESCRIPTION               | PART NUMBER    |
| C37                | .1 $\mu$ f ceramic disc   | R72284         |
| C38                | Not used                  |                |
| C39                | Not used                  |                |
| C40                | .1 $\mu$ f ceramic disc   | R72284         |
| C41                | .1 $\mu$ f ceramic disc   | R72284         |
| C42                | .1 $\mu$ f ceramic disc   | R72284         |
| C43                | .1 $\mu$ f ceramic disc   | R72284         |
| C44                | .1 $\mu$ f ceramic disc   | R72284         |
| C45                | .1 $\mu$ f ceramic disc   | R72284         |
| C46                | .1 $\mu$ f ceramic disc   | R72284         |
| C47                | .1 $\mu$ f ceramic disc   | R72284         |
| C48                | .1 $\mu$ f ceramic disc   | R72284         |
| C49                | .1 $\mu$ f ceramic disc   | R72284         |
| C50                | .1 $\mu$ f ceramic disc   | R72284         |
| C51                | .1 $\mu$ f ceramic disc   | R72284         |
| C52                | Not used                  |                |
| C53                | Not used                  |                |
| C54                | Not used                  |                |
| C55                | Not used                  |                |
| C56                | Not used                  |                |
| C57                | .01 $\mu$ f ceramic disc  | R72018         |
| C58                | Not used                  |                |
| C59                | .01 $\mu$ f ceramic disc  | R72018         |
| C60                | .047 $\mu$ f ceramic disc | R72296         |
| C61                | .01 $\mu$ f ceramic disc  | R72018         |
| C62                | 470 pf ceramic disc       | R72015         |
| C63                | 470 pf ceramic disc       | R72015         |
| C64                | 120 pf ceramic disc       | R72289         |
| C65                | .01 $\mu$ f ceramic disc  | R72018         |
| C66                | .1 $\mu$ f ceramic disc   | R72284         |
| C67                | .1 $\mu$ f ceramic disc   | R72284         |
| C68                | 10 $\mu$ f electrolytic   | R72642         |
| C69                | .047 $\mu$ f ceramic disc | R72296         |
| C70                | 100 pf ceramic disc       | R72012         |
| C71                | Not used                  |                |
| C72                | 47 pf ceramic disc        | Order RF board |



# **Capacitors**

| <b>REFERENCE</b> / |                           |                |
|--------------------|---------------------------|----------------|
| DESIGNATOR         | DESCRIPTION               | PART NUMBER    |
| C73                | 10 $\mu$ f electrolytic   | Order RF board |
| C74                | Not used                  |                |
| C75                | 20 pf ceramic disc        | Order RF board |
| C76                | 82 pf ceramic disc        | Order RF board |
| C77                | Not used                  |                |
| C78                | .01 $\mu$ f ceramic disc  | R72018         |
| C79                | Not used                  |                |
| C80                | 47 pf ceramic disc        | Order RF board |
| C81                | 47 pf ceramic disc        | Order RF board |
| C82                | .01 $\mu$ f ceramic disc  | Order RF board |
| C83                | 10 pf ceramic disc        | Order RF board |
| C84                | 82 pf ceramic disc        | Order RF board |
| C85                | 270 pf ceramic disc       | Order RF board |
| C86                | .01 $\mu$ f ceramic disc  | Order RF board |
| C87                | 10 $\mu$ f electrolytic   | R72642         |
| C88                | .1 $\mu$ f ceramic disc   | R72284         |
| C89                | .1 $\mu$ f ceramic disc   | R72284         |
| C90                | 120 pf ceramic disc       | R72283         |
| C91                | 150 pf ceramic disc       | R72014         |
| C92                | 82 pf ceramic disc        | R72288         |
| C93                | Not used                  |                |
| C94                | Not used                  |                |
| C95                | Not used                  |                |
| C96                | Not used                  |                |
| C97                | Not used                  |                |
| C98                | .01 $\mu$ f ceramic disc  | R72018         |
| C99                | .01 $\mu$ f ceramic disc  | R72018         |
| C100               | .1 $\mu$ f ceramic disc   | R72284         |
| C101               | .047 $\mu$ F ceramic disc | R72296         |
| C102               | 100 pf ceramic disc       | R72012         |
| C103               | .047 $\mu$ f ceramic disc | R72296         |
| C104               | 100 pf ceramic disc       | R72012         |
| C105               | .001 $\mu$ f ceramic disc | Order RF board |
| C106               | 10 $\mu$ f tantalum       | R72644         |



| Connectors | REFERENCE/<br>DESIGNATOR | DESCRIPTION                         | PART NUMBER            |
|------------|--------------------------|-------------------------------------|------------------------|
|            | J1                       | 30 pin, cartridge connector         | R75451                 |
|            | J2                       | 60 pin, expansion port<br>connector | Part of<br>Logic Board |
|            | J3                       | 4 pin, power connector              | R75458                 |
|            | J4                       | 8 pin riser                         | Order RF board         |
|            | J5                       | 9 pin "D", handcontrol<br>connector | R75450                 |
|            | J6                       | 9 pin "D", handcontrol<br>connector | R75450                 |
|            |                          |                                     |                        |

| Crystals | <b>REFERENCE</b> / |                     |             |
|----------|--------------------|---------------------|-------------|
|          | DESIGNATOR         | DESCRIPTION         | PART NUMBER |
|          | Y1                 | 7.15909 MHz crystal | R73276      |

| Diodes | <b>REFERENCE</b> / |              |                |
|--------|--------------------|--------------|----------------|
|        | DESIGNATOR         | DESCRIPTION  | PART NUMBER    |
|        | CR1                | Signal diode | R57188         |
|        | CR2                | Signal diode | R57188         |
|        | CR3                | Not used     |                |
|        | CR4                | Not used     |                |
|        | CR5                | Not used     |                |
|        | CR6                | Not used     |                |
|        | CR7                | Not used     |                |
|        | CR8                | Not used     |                |
|        | CR9                | Tuner diode  | Order RF board |

| Zener Diodes | REFERENCE/<br>DESIGNATOR<br>ZR1 | DESCRIPTION<br>6.2V zener | PART NUMBER<br>Order RF board |
|--------------|---------------------------------|---------------------------|-------------------------------|
|              |                                 | 0.24 201101               |                               |



#### **REFERENCE**/ DESIG

| GNATOR | DESCRIPTION                | PART NUMBER    |
|--------|----------------------------|----------------|
| L1     | Not used                   |                |
| L2     | 10 $\mu$ H postage stamp   | R73273         |
| L3     | 10 $\mu$ H postage stamp   | R73273         |
| L4     | 10 $\mu$ H postage stamp   | R73273         |
| L5     | 10 μH 1/2W                 | R73274         |
| L6     | 10 μH 1/2W                 | R73274         |
| L7     | 120 $\mu$ H postage stamp  | R73277         |
| L8     | 120 $\mu$ H postage stamp  | R73277         |
| L9     | 43 $\mu$ H postage stamp   | R73278         |
| L10    | 10 $\mu$ H postage stamp   | R73273         |
| L11    | Adjustable sound tank coil | Order RF board |
| L12    | 21⁄2 turn                  | Order RF board |
| L13    | 6 turn                     | Order RF board |
| L14    | 2.7 $\mu$ H postage stamp  | R73275         |
| L15    | 43 $\mu$ H, postage stamp  | R73278         |
| L16    | .7 μH                      | Order RF board |
| L17    | 43 $\mu$ H postage stamp   | R73278         |
|        |                            |                |

| Integrated | REFERENCE/<br>DESIGNATOR | DESCRIPTION                  | PART NUMBER |
|------------|--------------------------|------------------------------|-------------|
| Circuits   | U1                       | Z-80A microprocessor         | R73069      |
|            | U2                       | Masked ROM                   | R73108      |
|            | U3                       | $1K \times 4$ RAM            | R73071      |
|            | U4                       | $1K \times 4$ RAM            | R73071      |
|            | U5                       | 3 to 8 decoder               | R73072      |
|            | U6                       | 3 to 8 decoder               | R73072      |
|            | U7                       | Hex inverter, open collector | R73073      |
|            | U8                       | Dual "D" flip-flop           | R73074      |
|            | U9                       | Video display processor      | R73075      |
|            | U10                      | 16K × 1 video RAM            | R73076      |
|            | U11                      | $16K \times 1$ video RAM     | R73076      |
|            | Ú12                      | 16K $	imes$ 1 video RAM      | R73076      |
|            | U13                      | $16K \times 1$ video RAM     | R73076      |
|            | U14                      | 16K $\times$ 1 video RAM     | R73076      |
|            | U15                      | 16K $	imes$ 1 video RAM      | R73076      |
|            | U16                      | $16K \times 1$ video RAM     | R73076      |
|            |                          | V-14                         |             |



# Integrated Circuits

| <b>REFERENCE</b> / |           |
|--------------------|-----------|
| DESIGNATOR         | DE        |
| U17/               | 16K × 1 v |
| U18                | Octal buf |
| U19                | Octal buf |
| U20                | Sound ge  |
| U21                | RF modu   |
| U22                | Hex inve  |
| U23                | CMOS qu   |
| U24                | Quad nar  |
| U25                | 22KΩ res  |
| U26                | 22KΩres   |

|   | DESCRIPTION                | PART NUMBER    |
|---|----------------------------|----------------|
| - | $16K \times 1$ video RAM   | R73076         |
|   | Octal buffer               | R73077         |
|   | Octal buffer               | R73077         |
|   | Sound generator            | R73078         |
|   | RF modulator               | Order RF board |
|   | Hex inverter               | R73079         |
|   | CMOS quad bilateral switch | R73030         |
|   | Quad nand gate             | R73113         |
|   | 22KΩ resistor pack         | R73114         |
|   | 22KΩ resistor pack         | R73114         |
|   |                            |                |

# **Resistors**

**REFERENCE**/

.

| DESIGNATOR | DESCRIPTION                               | PART NUMBER |
|------------|-------------------------------------------|-------------|
|            | 1.5K Ω carbon film, $\frac{1}{4}$ W       | R58286      |
| R2         | Not used                                  |             |
| R3         | Not used                                  |             |
| R4         | Not used                                  |             |
| R5         | 330 $\Omega$ carbon film, $\frac{1}{4}$ W | R57269      |
| R6         | 620Ω carbon film, ¼W                      | R74310      |
| R7         | 91KΩcarbon film, ¼W                       | R74292      |
| R8         | 3.3KΩ carbon film, ¼W                     | R58446      |
| R9         | 1MΩ carbon film, ¼W                       | R57570      |
| R10        | 3.3KΩ carbon film, ¼W                     | R58446      |
| R11        | 180 $\Omega$ carbon film, 1/4 W           | R58049      |
| R12        | 3.3KΩ carbon film, ¼W                     | R58446      |
| R13        | 1.1KΩ carbon film, ¼W                     | R58441      |
| R14        | 3.3KΩcarbon film, ¼W                      | R58446      |
| R15        | 2.7KΩcarbon film, ¼W                      | R74004      |
| R16        | 3.3KΩcarbon film, ¼W                      | R58446      |
| R17        | $3.3K\Omega$ carbon film, $1/4W$          | R68446      |
| R18        | 1.8KΩ carbon film, ¼W                     | R58007      |
| R19        | 1.8KΩcarbon film, ¼W                      | R58007      |
| R20        | 1.8KΩcarbon film, ¼W                      | R58007      |
| R21        | 1.5KΩcarbon film, ¼W                      | R58286      |
| R22        | 120Ωcarbon film, ¼W                       | R74060      |
| R23        | 120Ωcarbon film, ¼W                       | R74060      |
| ١          | V-15                                      |             |



R74034

#### Resistors

#### **REFERENCE**/ DESIGNATOR DESCRIPTION PART NUMBER R24 100K Ω carbon film, ¼W R57602 R25 $1.5K \Omega$ carbon film, $\frac{1}{4}W$ R58286 R26 470 Ω carbon film, ¼W R74008 R27 100K carbon film, 1/4W R57602 **R28** Not used R29 Not used R30 Not used R31 Not used R32 Not used R33 Not used R34 $3.3K \Omega$ carbon film, $\frac{1}{4}W$ R58446 R35 $3.3K\Omega$ carbon film, $\frac{1}{4}W$ R58446 **R36** Not used R37 3.3K Ω carbon film. 1/4 W R58446 Not used **R38** 1K $\Omega$ carbon film, $\frac{1}{4}$ W R57268 R39 R40 390 $\Omega$ carbon film, $\frac{1}{4}$ W R74298 390 $\Omega$ carbon film, $\frac{1}{4}$ W R74298 R41 390 $\Omega$ carbon film, $\frac{1}{4}$ W R74298 R42 $10K\Omega$ carbon film, $\frac{1}{4}W$ Order RF board **R43 R44** Not used Not used R45 22KΩ carbon film, $\frac{1}{4}$ W Order RF board R46 R47 Not used R48 470KΩ carbon film, $\frac{1}{4}$ W R74300 R57266 R49 $10K \Omega$ carbon film, $\frac{1}{4}W$ Order RF board R50 8.2K $\Omega$ carbon film, $\frac{1}{4}$ W Order RF board R51 4.7KΩ carbon film, $\frac{1}{4}$ W Order RF board R52 $1K\Omega$ carbon film, $\frac{1}{4}W$ $1K\Omega$ carbon film, $\frac{1}{4}W$ Order RF board R53 Order RF board 1KΩ carbon film, ¼W R54 Order RF board 1.8K $\Omega$ carbon film, $\frac{1}{4}$ W R55 82 $\Omega$ carbon film, $\frac{1}{4}$ W Order RF board R56 240 Ω carbon film, 1/4 W Order RF board R57 Order RF board R58 240 $\Omega$ carbon film, $\frac{1}{4}$ W R59 Not used R60 $47\Omega$ carbon film, 1/4WR74294 R61 $1K\Omega$ carbon film, $\frac{1}{4}W$ R57268

270 Ω carbon film, ¼W

V-16

R62



## Resistors

| <b>REFERENCE</b> / |                                 |                |
|--------------------|---------------------------------|----------------|
| DESIGNATOR         | DESCRIPTION                     | PART NUMBER    |
| R63                | Not used                        |                |
| R64                | 1KΩcarbon film, ¼W              | R57268         |
| R65                | 270 $\Omega$ carbon film, 1/4 W | R74034         |
| R66                | Not used                        |                |
| R67                | 270Ωcarbon film, ¼W             | R74034         |
| R68                | 47Ω carbon film, ¼W             | Order RF board |
| R69                | 22KΩcarbon film, ¼W             | R57920         |
| R70                | 10KΩ carbon film, ¼W            | R57266         |
| R71                | 22KΩ carbon film, ¼W            | R57920         |
| R72                | 10KΩ carbon film, ¼W            | R57266         |
| R73                | 4.7KΩcarbon film, ¼W            | R57295         |
| R74                | 39KΩcarbon film, ¼W             | Order RF board |
| R75                | Not used                        |                |
| R76                | 1.8KΩcarbon film, ¼W            | R58007         |
| R77                | 22KΩcarbon film, ¼W             | R57920         |
| R78                | 1KΩcarbon film, ¼W              | R57268         |
| R79                | Optional trim resistor          |                |
| R80                | 39KΩ carbon film, ¼W            | Order RF board |
|                    |                                 |                |

| Switches    | REFERENCE/<br>DESIGNATOR | DESCRIPTION             | PART NUMBER    |
|-------------|--------------------------|-------------------------|----------------|
|             | S1                       | Reset switch            | <br>R74933     |
|             | S2                       | On/off switch           | R74932         |
|             | S3                       | Channel selector switch | Order RF board |
| Transistors | REFERENCE/               |                         |                |
|             | DESIGNATOR               | DESCRIPTION             | PART NUMBER    |
|             | Q1                       | Not used                |                |
|             | Q2                       | PNP transistor          | R74983         |
|             | Q3                       | PNP transistor          | R57298         |
|             | Q4                       | NPN transistor          | R74977         |
|             | Q5                       | NPN transistor          | R74977         |
|             | Q6                       | PNP transistor          | R57298         |



# Miscellaneous

### DESCRIPTION

#### PART NUMBER

| Power supply                   | S55416  |
|--------------------------------|---------|
| Logic board                    | S75747  |
| RF board                       | S75748  |
| Donkey Kong cartridge          | S78021  |
| Handcontroller                 | S78022  |
| Switch box assembly            | R74608  |
| Game cable                     | R75315  |
| RF box sideshield              | F74516  |
| RF box cover                   | F74519  |
| Heat sink (for U9)             | F74937  |
| Loctite 420 adhesive           | R75982  |
| Bottom shield assembly         | S57048  |
| Top housing assembly           | S92049  |
| Cartridge door assembly        | S78016  |
| Expansion port door            | F74751  |
| Front console label            | R77390  |
| Top console label              | R77391  |
| Top shield                     | F74514  |
| Bottom housing                 | F74747  |
| On/off switch cap              | F74749  |
| Reset switch cap               | F74750  |
| Phillips pan head screws       | M65319  |
| Rubber foot                    | R75973  |
| Instructions for fine tuning   | R74888  |
| Warranty card, console         | R78074B |
| Owner's manual                 | R78200A |
| Donkey Kong instruction manual | R78214  |
| Retail carton                  | R78080  |
| Top styrofoam insert           | R79962  |
| Bottom styrofoam insert        | R79983  |



#### Troubleshooting Equipment Requirements

In addition to having good ColecoVision peripherals (power supply, handcontroller, RF switch box, and coax game cable), the following test equipment is required for ColecoVision repair —

- -A 35 MHz oscilloscope
- -An 80 MHz frequency counter
- —An RF preamp capable of amplifying RF signals up to 80 MHz. This unit will be in series with the game and the frequency counter. This combination tests carrier frequency.
- A properly adjusted color television.
- -A diagnostic cartridge.
- -A ColecoVision Repair Manual.
- -A spinner interface tester.

# Diagnostic Cartridge

The cartridge was developed to aid in the testing of ColecoVision. Game cartridges should not be substituted to test the ColecoVision games, as they do not test as much circuitry as the diagnostic software.

This test is to be used in conjunction with the flow charts located at the end of this section. If a malfunction occurs while operating the diagnostic cartridge, refer to flow charts for troubleshooting procedures.

The first portion of the test is to check the internal ROM and RAM. The screen will indicate whether one or both of these tests have passed. If ROM is bad, change U2. If RAM is defective, change U3 or U4.

The video test follows. Simply compare the screen to the color pictures provided on page VI-3. If the screen does not compare with the pictures, follow the directions in the flow charts.

The sound test is the next step. All three of the sound generators are tested first, then the noise generator is tested. The test uses audio tones. Game cartridges do not consistently use all the generators so it is essential that the diagnostic cartridge is used, ensuring a thorough check of the audio portion of the game. If only one sound is missing replace U20.

The final test is the handcontroller test. It indicates each handcontrol function on the screen. Each function will blank out after that function has been selected and is performing correctly. It also provides a method of checking the spinner interface. This is accomplished by plugging the spinner interface tester into player number one, then player number two. After turning the tester on, an arrow should flash. Changing the direction switch will cause the arrow to flash in the opposite direction.



### **Explanation of** Troubleshooting

This manual is written as a guideline to aid in troubleshooting. It will lead the repair person to a level where individual isolation techniques can take over and diagnose the failure.

At this point, two assumptions have been made; the peripherals (power supply, controllers, RF switch box, RF cord) are good, and the landlines and solder connections are good. The peripherals can be tested by substitution. Faulty landlines and solder connections can be found by a careful visual inspection.

The troubleshooting guide uses flow charts, signal pictures and a list of technical tips. The signal pictures demonstrate how the signals should look in a perfect situation with an explanation and methods of examining each signal.

Following is a description of each symbol used in the flow charts.



**Decision Block** — Carefully read the question inside the block. Answer it by a simple yes or no. Follow the appropriate answer to the next block. Signals to be examined are designated by an IC number, a colon followed by a pin number (U9:38 means U9 Pin 38).



Process Block Perform the operation stated in the block and proceed to the next step.





Subroutine Block - Follow specific direction, usually directing repair person to proceed onto an additional page for more detailed instructions.



Return Block - Return to beginning of flow charts.



# Video Test



# **Color Test**





# Troubleshooting Flow Charts

| Sheet 1  | Overview Test                 |
|----------|-------------------------------|
| Sheet 2  | No Picture                    |
| Sheet 3  | Scrambled Picture             |
| Sheet 4  | Bad Color                     |
| Sheet 5  | Miscellaneous Picture Problem |
| Sheet 6  | Audio                         |
| Sheet 7  | Power Supply                  |
| Sheet 8  | Logic Section                 |
| Sheet 9  | Video Section                 |
| Sheet 10 | RF                            |
| Sheet 11 | 3.58 MHz Clock                |
| Sheet 12 | 10.7 MHz Clock                |
| Sheet 13 | U6                            |
| Sheet 14 | Handcontroller                |
| Sheet 15 | Spinner Interface             |



SHEET 1



#### SHEET 1 (CONT'D)







SHEET 2


























#### SHEET 7 (CONT'D)



















.













































# Pictures of Signals

The following pages have illustrated representations of oscilloscope readings. An oscilloscope with a bandwidth of at least 35 MHz is recommended for accurate readings. Adjacent to each diagram are directions of where to probe the circuit board, a signal description, where applicable, vertical and horizontal sensitivity adjustment information and directions to obtain correct signal representations.





# C66 (+) R-Y VIDEO

Vertical Sensitivity 1V/Div Horizontal Sensitivity 0.2mSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



### C66 (-) R-Y VIDEO

Vertical Sensitivity 1V/Div Horizontal Sensitivity 0.2mSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



# C67 (+) B-Y VIDEO

Vertical Sensitivity 2V/Div Horizontal Sensitivity 0.2mSec/Div





# C67 (-) B-Y VIDEO

Vertical Sensitivity 2V/Div Horizontal Sensitivity 0.2mSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



J4:2 — AUDIO Vertical Sensitivity 2V/Div Horizontal Sensitivity 5mSec/Div



### J4:3 - R-Y VIDEO

Vertical Sensitivity 2V/Div Horizontal Sensitivity 0.5mSec/Div





#### J4:4

Vertical Sensitivity 5mV/Div Horizontal Sensitivity 2µSec/Div AC Coupled.

Signal Shown Is Ripple on 12VDC Line. DC Level Should Be 12VDC.



# J4:6 - COMPOSITE VIDEO

Vertical Sensitivity 2V/Div Horizontal Sensitivity 0.2mSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



# J4:7 - B-Y VIDEO

Vertical Sensitivity 2V/Div Horizontal Sensitivity 0.2mSec/Div





# J4:8 — RF CLOCK

Vertical Sensitivity 2V/Div Horizontal Sensitivity 1µSec/Div Frequency 3.579545 MHz ± 100Hz



### **Q6 BASE Y VIDEO**

Vertical Sensitivity 1V/Div Horizontal Sensitivity 0.2mSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



### U1:6 - MAIN CLOCK

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 50nSec/Div Frequency — 3.579545 MHz ± 100 Hz





### U1:16 - INTERRUPT

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 0.2µSec/Div

Signal Should Basically Be a 5VDC Level



# U1:17 - NMI

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 0.5mSec/Div



# U1:18 - HALT

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 0.5mSec/Div

Signal Should Basically Be a 5VDC Level





### U1:19 M REQ

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 0.1µSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



# U1:20-IORQ

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 5µSec/Div



# U1:20-IORQ

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 50µSec/Div





#### U1:22 - WR

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 1µSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



### U1:24 --- WAIT

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 1µSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



# U1:27 — M1

Vertical Sensitivity — 1V/DivHorizontal Sensitivity —  $2\mu$ Sec/Div





### U1:28 - RSFH

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 5µSec/Div



# U1:35 - ADDRESS LINE A5

Vertical Sensitivity — 1V/DivHorizontal Sensitivity —  $1\mu$ Sec/Div

All Address Lines Should Have a Similar Signal (Pulses), If No Pulses Are Seen the Address Line Is Dead. The Signal Shown Is During Blue Menu Screen of Game Cartridge.



# U6:5 GATE 2B

Vertical Sensitivity — 50mV/Div Horizontal Sensitivity — 0.2µSec/Div

Signal Should Be a DC Level Less Than 250mV.





#### U7:3

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 2µSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



### U7:3

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 0.5µSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



# **U7:8 INTERRUPT**

Vertical Sensitivity — 1V/Div Horizontal Sensitivity 500µSec/Div

Signal Shown Is with Spinner Interface Tester in Operation.





### U7:9

Vertical Sensitivity 1V/Div Horizontal Sensitivity 500 µ Sec/Div

Signal Shown Is with Spinner Interface Tester in Operation



# U8:1 M1

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 0.5µSec/Div



# U8:1 M1

Vertical Sensitivity — 1V/Div Horizontal Sensitivity — 5µSec/Div





# U8:3 3.58 MHz CLOCK

Vertical Sensitivity 1V/Div Horizontal Sensitivity — 50nSec/Div



# U8:8 3.58 MHz CLOCK

Vertical Sensitivity 1V/Div Horizontal Sensitivity 50nSec/Div



# U8:9 3.58 MHz CLOCK

Vertical Sensitivity 1V/Div Horizontal Sensitivity 50nSec/Div





### U9:1 - RAS

Vertical Sensitivity 1V/Div Horizontal Sensitivity 50nSec/Div



Ŧ

Ŧ

ŧ

Ŧ

100

90.

### **U9:2 – CAS** Vertical Sensitivity 1V/Div

Horizontal Sensitivity 10/Div

### **U9:3 --- VDP ADDRESS LINE A** Vertical Sensitivity 1V/Div

Vertical Sensitivity 1V/Div Horizontal Sensitivity 50nSec/Div

All VDP Address Lines Should Have Similar Waveforms (Pulses), If No Pulses Are Seen the Address Line Is Dead.

Ground





### U9:13 — MODE A $\phi$

Vertical Sensitivity 1V/Div Horizontal Sensitivity 0.1µSec/Div



### U9:14 - VDP CSW

Vertical Sensitivity 1V/Div Horizontal Sensitivity 2µSec/Div

Signal Shown Is Right After the Reset Switch Was Released.



# U9:15 - VDP CSR

Vertical Sensitivity 1V/Div Horizontal Sensitivity 2µSec/Div

Signal Shown Is During Game Play of a Game Cartridge. The Negative Pulse May or May Not Be Present. Negative Pulses Are Always Present Although Sometimes They Are Too Fast for the Oscilloscope.





## U9:17 - DATA LINE D7

Vertical Sensitivity 1V/Div Horizontal Sensitivity 1µSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge. All the Data Lines Should Have a Similar Waveform, If Not, the Data Line Is Dead.



# U9:25 - VDP DATA LINE RD7

Vertical Sensitivity 1V/Div Horizontal Sensitivity 0.1mSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge. All Data Lines Should Have a Similar Waveform, If Not the Data Line Is Dead.



# U9:35 - B-Y VIDEO OUTPUT

Vertical Sensitivity 1V/Div Horizontal Sensitivity 20µSec/Div





# U9:35 - B-Y VIDEO OUTPUT

Vertical Sensitivity 1V/Div Horizontal Sensitivity 20µSec/Div

Signal Shown is During "ColecoVision Presents" Screen.



# U9:36 - Y VIDEO OUTPUT

Vertical Sensitivity 1V/Div Horizontal Sensitivity 10µSec/Div

Signal Shown Is During "ColecoVision Presents" Screen.



# U9:36 - Y VIDEO OUTPUT

Vertical Sensitivity 1V/Div Horizontal Sensitivity 10µSec/Div





# U9:38 - R-Y VIDEO OUTPUT

Vertical Sensitivity 1V/Div Horizontal Sensitivity 2mSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



# U9:40-VDP CLOCK

Vertical Sensitivity 1V/Div Horizontal Sensitivity 50nSec/Div

Frequency 10.7MHz



# U20:5, 6

Vertical Sensitivity 1V/Div Horizontal Sensitivity 0.5mSec/Div

Signal Shown Is During Game Play of a Game Cartridge.




## U20:7 - AUDIO OUTPUT

Vertical Sensitivity 0.5V/Div Horizontal Sensitivity 10mSec/Div

Signal Shown Is During Game Play of a Game Cartridge. This Signal Will Vary Depending on the Sound.



### U20:14 - SOUND GENERATOR CLOCK

Vertical Sensitivity 0.5V/Div Horizontal Sensitivity 0.5µSec/Div



### U22:1 INPUT TO THIRD HARMONIC WAVE SHAPER

Vertical Sensitivity 0.5V/Div Horizontal Sensitivity 5µSec/Div

Signal Shown Is with C91 Installed. C91 Is Not in All Revisions. The Waveform Will Vary Slightly with C91 Removed.





### U22:3

Vertical Sensitivity 1V/Div Horizontal Sensitivity 5µSec/Div

Signal Shown Is with C91 Installed. C91 Is Not in All Revisions. The Waveform Will Vary Slightly with C91 Removed.



### U22:4

Vertical Sensitivity 1V/Div Horizontal Sensitivity 5µSec/Div

Signal Shown Is with C91 Installed. C91 Is Not in All Revisions. The Waveform Will Vary Slightly with C91 Removed.



# U22:8 7.159 MHz CLOCK

Vertical Sensitivity 1V/Div Horizontal Sensitivity 5µSec/Div





## U23:11 - Y VIDEO

Vertical Sensitivity 1V/Div Horizontal Sensitivity 0.2mSec/Div

Signal Shown Is During Blue Menu Screen of Game Cartridge.



### U24:8

Vertical Sensitivity 1V/Div Horizontal Sensitivity 500µSec/Div

Signal Shown Is with Spinner Interface Tester in Operation.



## U24:9

Vertical Sensitivity 1V/Div Horizontal Sensitivity 500µSec/Div

Signal Shown Is with Spinner Interface Tester in Operation





### U24:10

Vertical Sensitivity 1V/Div Horizontal Sensitivity 500µSec/Div

Signal Shown Is with Spinner Interface Tester in Operation



## U24:11

Vertical Sensitivity 1V/Div Horizontal Sensitivity 500µSec/Div

Signal Shown Is with Spinner Interface Tester in Operation



# U24:12

Vertical Sensitivity 1V/Div Horizontal Sensitivity 500µSec/Div

Signal Shown Is with Spinner Interface Tester in Operation





### U24:13

Vertical Sensitivity 1V/Div Horizontal Sensitivity 500µSec/Div

Signal Shown Is with Spinner Interface Tester in Operation.



## **Technical Tips**

#### **Black Out on Screen**

If the screen blacks out after the game has been played for a short interval check C106 for proper polarity. If polarity is wrong replace C106.

#### Purple Monkey

In Donkey Kong, if the monkey, Mario and the barrels are purple, rather than their normal colors, replace U9.

#### **Joystick Game Selection**

If the keypad does not control the game selection, only the joystick can be used to select games, replace U6.

#### Channel 3 But Not Channel 4

Channel 3 operates normally but channel 4 works only if the game is turned off and then turned back on again, (or vice versa) replace RF board.

#### **Not All Cartridges Function**

Game does not accept all and/or any cartridges. Examine C70 for mechanical obstructions. Is it flopped over flat on board? Replace U5.

#### **Vertical Lines**

Vertical lines on background rather than solid blue background with no lines. Replace C106.

#### Skips Menu

Menu is skipped. This is the blue screen with skill levels. Check pins 3-9 of U18 with DVM. If any pin is below 2.2VDC change U18. Check pins 2-8 of U18 with DVM. If any pin is below 2.2VDC, change U19.

#### No Explosion

If there is no explosion, a sound testing the noise generator, on the final test, replace U20.

#### 12 VDC Is Shorted to -5VDC

Examine WJ2 to see if it has shorted to adjacent test points.

#### No RF Voltage

If there is no voltage to RF board, check WJ2.

#### No Color

If color has disappeared, check frequency at J4 Pin 8. Correct frequency is 3.57954 MHz  $\pm$  100 Hz. If the frequency is incorrect, check the clock circuit.

#### **Double Image**

Replace U9 for double images.

#### **Wavey Picture**

If the picture is wavey, ensure that R62 is  $270\Omega$  and C90 is 120pF. If they are incorrect, replace them. Check Q2, if it is an ITT transistor, replace it.

#### Incorrect Scoring

If scoring is not working properly, replace U3 and/or U4.

#### Wrong Frequency

3.579 MHz clock is the wrong frequency. If U22 is a Texas Instrument I.C., replace it.

#### **Bad Spinner Interface**

Spinner interface is not working. If U24 is a Texas Instrument I.C., replace it.

#### Slow Game

If game is running abnormally slow, replace U20.



#### **Scrambled Picture**

If the following images appear on your screen (at this point no cartridge or expansion module is being used) rather than "ColecoVision Presents" make adjustments as directed below each example.



# **Replace U10**



## **Replace U11**



**Replace U12** 



## **Replace U13**







# **Replace U17**

**Replace U14** 

# **Replace U15**

COLECOCAFO

PORJ CAIA KBB BABKRA IJSARPIJC CARPRIECA KR AXPAJSIKJ IKEQHA\*

1982 CKHACK

**Replace U16** 

TH

H

1

1

TURN GAME DFF

BEFORE INSERTING CARTRIDGE

DR EKPANSION MODULE.

B 1932 00.500



### Glossary

Active High—A signal is considered active high when the true state of the signal is high.

Active Low—A signal is considered active low when the true state of the signal is low.

**CAS**—Column Address Strobe—Used to inform VRAM that the address on the bus is the column of the matrix.

**CPU**—Central Processing Unit

**CSR**—Chip Select Read—The VDP sends data onto the data bus when CSR is active (low).

**CSW**—Chip Select Write—The VDP writes data from the data bus into internal registers when CSW is active (low).

CS1-CS4—Chip Select 1-4—Used to select separate IC's inside the cartridge.

**Data Address Bus**—a wire or group of wires used to carry data to or from a number of different locations.

**I.C.**—Integrated Circuit— a combination of interconnected circuit elements inseparably associated on or within a continuous substrate.

**Memory Bus**—the CPU register in a computer, which holds the address of the memory location being accessed.

**Mode**  $A \not o$  — A control signal used by the VDP to select data entry or exit point. If high, the data will be stored or retrieved from internal registers. If low, data will be stored into or retrieved from VRAM.

**NMI**—Non Maskable Interrupt—The VDP sends an NMI signal to the CPU every 1/60 second (refresh rate of TV).

**NOP**—No Operation—An instruction for a computer to do nothing but process the next instruction in sequence.

**Pixel**—The smallest point on the television screen that can be independently controlled.

Planes - Same as geometric planes, provide background, borders, etc.

**RAM** — Random Access Memory — A memory that can be written into or read by locating any data address.

**RAS**—Row Address Strobe—Used to inform VRAM that the address on the bus is the row of the matrix.

**RF Modulator**—Combines video and audio information into a carrier wave to transport it to television receiver.

**Sprite**—An object whose pattern is relative to a specified X, Y coordinate and whose position can therefore be controlled by that coordinate with a positional resolution of one pixel.

**Tri-State** — Logic systems utilizing three conditions on one line: a definitely applied high voltage (logic 1); a definite low voltage (logic  $\emptyset$ ); and an open circuit of undefined state, permitting another part of the circuit to determine whether the line will be high or low.

**VRAM**—Video RAM—refers to the dynamic RAMs that connect to the VDP and whose contents define the TV image.



# Updates

Subject:First UpdateDate:March 1, 1983

An example of the ColecoVision updates that will be provided to you as they occur. They should be placed in this section for quick referral.



## Notes

The enclosed notepaper is provided for the repair person's personal ColecoVision notes to enhance the manual for each individual.